Abstract

A hydrothermal method using tetrabutyl titanate and KOH as reactants for synthesis of K2Ti6O13 nanowires was developed, obtaining nanowires with a uniform diameter around 10nm. It is shown that the hydrothermal temperature and the KOH concentration have little influence in tuning the growth of K2Ti6O13 nanowires. By changing the time for hydrothermal reaction, the length of K2Ti6O13 nanowires can be controlled from several dozen of nanometers to several hundreds of nanometers. The as-prepared K2Ti6O13 nanowires exhibit a wide and strong absorption band in the ultraviolet range (around 200~300 nm), and stable photocurrent of 0.5μA/cm2, which might suggest potential applications in solar cell and water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call