Abstract

In this study, we demonstrate a method for creating multi-length-scale ZnO nanowires in a controllable manner on diverse planar and curvilinear substrates by introducing immiscible liquid masking layers (LMLs) above and beneath a nutrient solution used in hydrothermal growth. The confinement of volatile reactants by the LMLs stabilizes the pH, which is an important parameter in determining the shape of the nanowires, to enable growth in a stable manner. The conformal wettability of the LMLs provides freedom in the choice of target substrates and allows for the possibility of mounting spatially moving stages without the use of a specially designed solid lid. Selective growth within the growth zone defined by the LMLs in a dynamic- and/or static-mode can create various types of ZnO nanowires with gradual or terraced length profiles in two- or three-dimensional geometries. For a device application, we developed cylindrical photodetectors with the configuration of Cr/ZnO seed/ZnO nanowires/poly(3-hexylthiophene-2,5-diyl)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) to show the ability to spatially modulate the photo-sensitivity by controlled hydrothermal growth of diverse length scales of ZnO nanowires using the LML method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call