Abstract

High intensity discharge lamps are typically operated at low frequency to avoid damage from acoustic resonance. Accordingly, an electronic ballast normally comprises a buck converter to control the lamp current magnitude and a full-bridge to commutate the lamp current at a low frequency. In such a system, the negative dynamic lamp characteristic may interact with the power electronic driver may give a poorly damped response, sometimes resulting in an oscillatory lamp current. Furthermore, lamp aging and reduced power mode operation both tend to increase re-ignition voltage overshoot, which in turn may lead to reduced lifetime, or prematurely extinguishing lamps. In the present paper, a procedure for obtaining the small-signal dynamic characteristics of metal halide lamps is proposed. Using this dynamic model, the lamp-ballast interaction is simulated and analyzed. A fuzzy-logic control method is presented to cope with nonlinear behavior and improve the lamp-ballast performance. The simulation results are verified with practical measurements on a laboratory prototype

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.