Abstract
Metal atoms bonded with Si adatoms on the Si(111)-(7x7) surface undergo migration by hopping adjacent Si-rest atoms with dangling bond. By saturated adsorption of Si(111)-(7x7) surface with C(2)H(5)OH, the whole Si-rest atoms and a half of Si adatoms are occupied with Si-H and Si-OC(2)H(5), so that the Zn atoms adsorbed on this surface cannot migrate by hopping. When Zn atoms were deposited on this surface, ca. 5 nm Zn dots were grown in the hexagonal spacing of ca. 5.4 nm width around the corner holes, which work as a mold. This is quite different from the growth of honeycomb layers composed of Zn(3) clusters on the clean Si(111)-(7x7) surface. The dots grow up to nine (1.97 nm) to 13 layers (2.64 nm) by keeping their size, which implies a layer-by-layer growth of dots in the mold, where the growth is controlled by the kinetics instead of energetic feasibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.