Abstract

Tungsten trioxide (WO3) nanostructures were synthesized by hydrothermal method using sodium tungstate (Na2WO4·2H2O) alone as starting material, and sodium tungstate in presence of ferrous ammonium sulfate [(NH4)2Fe(SO4)2·6H2O] or cobalt chloride (CoCl2·6H2O) as structure-directing agents. Orthorhombic WO3having a rectangular slab-like morphology was obtained when Na2WO4·2H2O was used alone. When ferrous ammonium sulfate and cobalt chloride were added to sodium tungstate, hexagonal WO3nanowire clusters and hexagonal WO3nanorods were obtained, respectively. The crystal structure and orientation of the synthesized products were studied by X-ray diffraction (XRD), micro-Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM), and their chemical composition was analyzed by X-ray photoelectron spectroscopy (XPS). The optical properties of the synthesized products were verified by UV–Vis and photoluminescence studies. A photodegradation study on Procion Red MX 5B was also carried out, showing that the hexagonal WO3nanowire clusters had the highest photodegradation efficiency.

Highlights

  • One-dimensional (1-D) nanostructures have attracted much attention because of their distinct properties and wider applications

  • The data reported in Refs. [6, 14–17] show that I-group compounds such as Li2SO4, Na2SO4, Na2S, K2SO4, and Rb2SO4 were used as structure-directing chemicals for the synthesis of WO3 nanostructures

  • Rectangular slab-like WO3 crystals were obtained by direct hydrothermal synthesis

Read more

Summary

Introduction

One-dimensional (1-D) nanostructures have attracted much attention because of their distinct properties and wider applications. Keywords Tungsten trioxide Á Hydrothermal Á Structure-directing chemicals Á Nanowires Á Nanorods Á Photodecomposition Cobalt chloride was used as another structure-directing chemical to realize the change in morphology of WO3 products.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.