Abstract

The electrochemical applications of enzymes are often hampered by poor enzyme stability and low electron conductivity. In this work, a novel enzyme nanogel based on atom transfer radical polymerization (ATRP) has been developed for highly sensitive detection of glucose based on ferrocene (Fc) embedded in crosslinked polymer network nanogel. Enzyme surfaces are successively modified with Br initiator, and then in situ atom transfer radical polymerization (ATRP) was performed to build up crosslinked polyacrylamide network. The resulting single enzyme nanogel (ATRP-SEG) is uniform in size fairly. ATRP-SEG reveals bi-phasic inactivation, and the half-life of stable ATRP-SEG after 18-day incubation at 50 °C is 47 days, which is 197 times longer than that of free Gox (5.7 h). By introducing a ferrocene (Fc) containing redox polymer, poly(acrylamide-co-vinylferrocene), the half-life of Fc-ATRP-SEG after 18-day incubation at 50 °C is 49 days. Fc-ATRP-SEG is used for preparation of glucose-sensing electrode, and the sensitivity of Fc-ATRP-SEG electrode is 111 μA cm−2 mM−1, which is 366 and 1270 times higher than those of free GOx (0.303 μA cm−2 mM−1) and ATRP-SEG (0.0874 μA cm−2 mM−1), respectively. Fc-ATRP-SEG electrode maintained 90% of initial current density under 4 °C storage condition and repetitive usages every day for 7 days. Even the electrode repeatedly used in continuous harsh condition (250 rpm, room temperature), the current density maintained 96% after 12 h incubation at operational condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.