Abstract
We report the controlled growth of one-dimensional clusters of molybdenum atoms inside the inner cores of double-walled carbon nanotubes. A combined characterization including high resolution transmission electron microscopy, nitrogen adsorption measurement at 77 K, x-ray photoelectron spectroscopy, Raman spectroscopy, and thermogravimetric analysis reveals that the growth of one-dimensional Mo clusters can be controlled by varying the reaction conditions. The products have specific surface areas of 360–480 m2 g−1, and their characteristic properties are attributed to the presence of Mo cluster, which affect the electronic structure and can be exploited for the development of nanotube electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.