Abstract

Magnetite nanoparticles were synthesized by chemical coprecipitation of ferric and ferrous aqueous solutions via regulation of the microenvironment at ambient conditions. Nanocrystals having an average diameter of 6 to 12 nm were obtained by picoliter droplets, whereas only 9 nm diameter nanocrystals were prepared by microliter droplets. The size of the nanocrystals was controlled by a precise balance of reactions of hydroxide ions with positive ions at the surface layer and inner layers of the droplets. The crystal structure and average size were analyzed by X-ray diffraction pattern and transmission electron microscope images. The field dependence and temperature dependence on magnetization measured by a superconducting quantum interference device demonstrate that the as-synthesized particles are superparamagnetic at room temperature and have a size-dependent magnetic property. The anisotropy constant calculated by the blocking temperature and particle size was found to decrease with increasing particle size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.