Abstract
Organic-inorganic hybrid perovskites have garnered significant attention in optoelectronics owing to their outstanding tunable optical characteristics. Controlled growth of perovskite nanocrystals from solutions is key for controlling the emission intensity and photoluminescence lifetime of perovskites. In particular, most studies have focused on controlling the crystallization of perovskite through chemical treatment using chelating ligands or physical treatment via antisolvent diffusion, and there exists a trade-off between the photoluminescence intensity and lifetime of perovskites. Herein, a selective solvent vapor-assisted crystallization with the aid of a functional polymer, which nanoscale perovskite crystals are grown andante from precursor solution, is presented for tuning the crystallization and optical properties of a common halide perovskite, methylammonium lead bromide (MAPbBr3 ). The proposed method here produces perovskite nanocrystals in the range of 200-300nm. The spin-coated thin film formed from the perovskite solution exhibits strong green photoluminescence with a long lifetime. The effects of the functional group and polymer dosage on the crystallization of MAPbBr3 are systematically investigated, and the crystallization mechanism is explained based on a modified LaMer model. This study provides an advanced solution process for precisely controlling perovskite crystallization to enhance their optical properties for next-generation optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.