Abstract
A large variety of copper oxide nanostructures encompassing nanodots, nanowires and nanowalls, sometimes organized in “cabbage-like” architectures, are grown locally by direct oxidation of copper thin films using the micro-afterglow of an Ar–O2 microwave plasma operating at atmospheric pressure. Morphology, structure and composition of the oxidized copper thin films are characterized by X-ray diffraction, secondary ion mass spectrometry and scanning electron microscopy. The concentric areas where each kind of nanostructures is found are defined by both their radial position with respect to the afterglow centre and by experimental conditions. A growth mechanism is proposed, based on stress-induced outward migration of copper ions. The development of stress gradients is caused by the formation of a copper oxide scale layer. If copper oxide nanowires can be grown as in thermal oxidation processes, micro-afterglow conditions offer novel nanostructures and nano-architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.