Abstract
Low-pressure chemical vapor deposition (LP-CVD) technique has been utilized for controlled growth of carbon nanotube (CNT) arrays on silicon wafers. The tube-diameters of CNTs and the number of graphene layers are controlled by varying the thickness of catalyst films. The catalyst particle density and the growth conditions such as the ambient gas and the local environment are all crucial for the formation of vertically aligned CNT arrays. The length of CNT arrays can be controlled by altering the growth time. In addition, the supercapacitive properties of CNT arrays with various morphologies growing on different current collectors have been investigated using a less corrosive 0.5 M Na2SO4aqueous solution as the electrolyte. Vertically aligned CNT arrays on Ti-Si substrate produce a higher capacitance compared to randomly oriented CNTs on the same current collector. Furthermore, Ni foam enables better utilization of active materials than Ti-Si substrate. CNT arrays electrodes fabricated by this simple, low cost approach demonstrate stable and consistent capacitor behaviors for a wide range of scan rates. Moreover, CNT arrays electrodes provide better platform for further integration with transitional metal oxide, via simple sputtering or electrodeposition technique, to enhance the supercapacitive performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.