Abstract

This work presents a new approach for the synthesis of a starch-g-poly L-lactic acid (St-g-PLA) copolymer via the graft copolymerization of LA onto starch using stannous 2-ethyl hexanoate (Sn(Oct)2) as a catalyst in a supercritical carbon dioxide (scCO2) medium. The effects of several process parameters, including the pressure, temperature, scCO2 flow rate and reaction time, on the polymerization yield and grafting degree were studied. Amorphous graft St-g-PLA copolymers with increased thermal stability and processability were produced with a high efficiency. The maximum grafting degree (i.e., 52% PLA) was achieved with the following reaction conditions: 6h, 100°C, 200bar and a 1:3 (w/w) ratio of St/LA. It was concluded that these low cost biobased graft biopolymers are potential candidates for several environment-friendly applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call