Abstract

The surface chemistry of Single-Walled Carbon Nanotubes is finely tailored by a HNO3 hydrothermal method. Temperature Programmed Desorption analysis is used to determine the nature and amount of different oxygenated functionalities, which are introduced in a controlled mode. The degree of oxygen functionalization is correlated with HNO3 concentration through a mathematical function. Operating temperature and HNO3 concentration are key parameters in the modification of the surface chemistry, in accordance with previous results obtained with a carbon xerogel subjected to the same hydrothermal treatment. A detailed comparison between the results obtained with both materials indicates that the yield of the HNO3 hydrothermal functionalization strongly depends on the texture of the carbon material that is used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call