Abstract

The present work reports the solvent-free, one-pot functionalization of multiwall carbon nanotubes (CNTs) based on the 1,3-dipolar cycloaddition of azomethine ylides using N-benzyloxycarbonyl glycine and formaldehyde. The surface morphology of the functionalized CNTs was investigated by scanning tunneling microscopy. The effect of temperature on the reaction was studied by thermogravimetry and X-ray photoelectron spectroscopy (XPS). XPS was a key technique for the detailed chemical analysis of the CNT surface. The formation of two major reaction products was observed, namely a cyclic benzyl carbamate and a pyrrolidine. The concentration of the two products varied with reaction temperature and time. At 180 °C, the main product was the cyclic benzyl carbamate, while at 250 °C the major product was the pyrrolidine. This simple, solvent-free chemical procedure yields CNTs with fine-tuned surface functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.