Abstract

It is predicted that strongly interacting spins on a frustrated lattice may lead to a quantum disordered ground state or even form a quantum spin liquid with exotic low-energy excitations. However, a controlled tuning of the frustration strength, separating its effects from those of disorder and other factors, is pending. Here, we perform comprehensive ^{1}H NMR measurements on Y_{3}Cu_{9}(OH)_{19}Cl_{8} single crystals revealing an unusual Q[over →]=(1/3×1/3) antiferromagnetic state below T_{N}=2.2 K. By applying insitu uniaxial stress, we break the symmetry of this disorder-free, frustrated kagome system in a controlled manner yielding a linear increase of T_{N} with strain, in line with theoretical predictions for a distorted kagome lattice. In-plane strain of ≈1% triggers a sizable enhancement ΔT_{N}/T_{N}≈10% due to a release of frustration, demonstrating its pivotal role for magnetic order.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call