Abstract

Microstructures and mechanical properties of Al-Ni-Co-Fe-Cr high-entropy alloys (HEAs) were investigated by systematically varying transition metals instead of Al, within the chemical formula of Al2M14 (M represents different mutations of transition metals). The formation of different crystal structures (FCC, BCC, or FCC+BCC mixture) and its effects on the resulting mechanical properties of this series of HEAs, both in tension and compression, were evaluated. It was found that, in the BCC-dominated HEAs, ordered B2 precipitates were always coherently dispersed in the BCC solid-solution matrix. The shape of these B2 precipitates was strongly affected by the lattice misfit between the disordered BCC and ordered B2. A uniform distribution of cuboidal B2 particles could be obtained by properly adjusting M, thus the lattice misfit, in a manner similar to that in Ni-based superalloys. Strengthening effects caused by different BCC/B2 morphologies were also estimated and compared with experimental measurements. The optimal strengthening as a function of the shape and size of the coherent precipitates was discussed in light of the lattice misfit in these HEAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.