Abstract
Animal fat as the key component of sensory experience impacts texture, juiciness, and aroma pleasantness of meat, which indicates the necessity of designing fat mimetics in meat alternatives. In this study, high internal phase emulsions (HIPE) with tunable flavor release as fat mimetics based on glycyrrhizic acid (GA) and phytosterol were prepared, and the effects of GA and phytosterol concentrations on the microstructural, rheological, and flavor release properties of HIPE were evaluated. Phytosterol crystals-enriched oil droplets were trapped inside the GA fibrillar matrix as stabilizers. HIPE containing higher GA and phytosterol concentrations exhibited smaller droplet size and better viscoelastic attributes. Additionally, phytosterol played a synergistic role with GA to form a double-fiber microstructure at the oil–water interface. This hierarchical microstructure of oil phase, interface and aqueous phase in the HIPE could regulate the release of hydrophilic and lipophilic meat volatiles. HIPE as fat mimetics with unique microstructure have potential applications in meat alternatives.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.