Abstract

The unique properties of covalent triazine-based organic framework/polymers, including large surface area, hydrophilic-lipophilic-balanced adsorption, and economical preparation, make it a promising candidate as a stationary phase for high-performance liquid chromatography. However, irregular shapes and wide size distributions of such particles hinder column packing, resulting in a low column efficiency or a high back pressure. Herein, we describe the fabrication of SiO2@ covalent triazine-based organic polymer (CTP) core-shell microspheres with a distinct sphere-coating-sphere appearance using aminosilica as the supporting substrate to grow the CTP shell. By adjusting the amount of reactants, the thickness of the CTP shell, which consists of triazine and 1,3,5-triphenylbenzene monomers, was easily controlled. The developed core-shell microspheres were characterized via scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, solid-state 13C nuclear magnetic resonance analysis, and N2 adsorption experiments. The synergism of the triazine and aromatic moieties on CTP provides the new stationary phase with multiple retention mechanisms, including hydrophobic, π-π, electron donor-acceptor, hydrogen-bonding interactions, and so forth. On the basis of these interactions, successful separation and higher shape selectivity were achieved among several analytes that vary in polarity under both reversed-phase and hydrophilic interaction liquid chromatography conditions. Therefore, SiO2@CTP microspheres combine the advantages of good column packing properties of the uniform monodisperse silica microspheres and the recognition performance of CTP, generating flexible selectivity and application prospect for both hydrophilic and hydrophobic analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.