Abstract

Double-walled TiO2 nanotubes with porous wall morphologies are fabricated by anodization under ultraviolet (UV) irradiation. TiO2 formed by anodization of Ti is activated to generate electrons and holes by UV and the anodization process is influenced by the photo-generated charges. As a consequence, morphologies of the fabricated TiO2 nanotubes can be adjusted by controlling the UV illumination. Double-walled TiO2 nanotubes or single-walled nanotubes can be selectively formed by switching on/off the UV illumination. The thickness of the inner and outer walls of the double-walled nanotubes can be tailored by changing the UV power. Due to their larger surface areas compared to single-walled nanotubes, the porous double-walled nanotubes exhibit an enhanced photo-degradation rate for methylene blue (MB). The mechanism of the porous double-walled TiO2 nanotubes is proposed based on the photoactive semiconducting property of the as-growing TiO2 nanotubes under UV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.