Abstract

The authors have previously demonstrated an electrokinetic fabrication method of a carbon nanotube (CNT) gas sensor using dielectrophoresis. One advantage of the technique was that one could quantify the amount of trapped nanotubes on a real time basis by monitoring electrical impedance of the sensor (dielectrophoretic impedance measurement, DEPIM). In the present study, we extended the DEPIM technique to controllable assembly of the carbon nanotube gas sensor. This realized a production of CNT gas sensors with identical electrical properties such as initial conductance. The gas sensor response to ppm-level nitrogen dioxide (NO 2) gas was investigated with various values of the initial conductance. It was found that relative conductance change of the CNT gas sensor after NO 2 exposure increased almost proportionally with the initial conductance for a constant NO 2 concentration. This enabled to define intrinsic sensitivity of CNT sensors by normalization. It was found that a single-wall CNT gas sensor had higher normalized sensitivity than a multi-wall CNT sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.