Abstract

We show that an inducible rpoS antisense RNA complementary to the rpoS message can inhibit expression of RpoS in both exponential and stationary phases and can attenuate expression of the rpoS regulon in Escherichia coli. Plasmids containing rpoS antisense DNA expressed under the control of the T7lac promoter and T7 RNA polymerase were constructed, and expression of the rpoS antisense RNA was optimized in the pET expression system. rpoS antisense RNA levels could be manipulated to effectively control the expression of RpoS and RpoS-dependent genes. RpoS expression was inhibited by the expression of rpoS antisense RNA in both exponential and stationary phases in E. coli. RpoS-dependent catalase HPII was also downregulated, as determined by catalase activity assays and with native polyacrylamide gels stained for catalase. Induced RpoS antisense expression also reduced the level of RpoS-dependent glycogen synthesis. These results demonstrate that controlled expression of antisense RNA can be used to attenuate expression of a regulator required for the expression of host adaptation functions and may offer a basis for designing effective antimicrobial agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.