Abstract

Various methods have been used for time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA), many involving view sharing. However, the extent to which the resultant image time series represents the actual dynamic behavior of the contrast bolus is not always clear. Although numerical simulations can be used to estimate performance, an experimental study can allow more realistic characterization. The purpose of this work was to use a computer-controlled motion phantom for study of the temporal fidelity of three-dimensional (3D) time-resolved sequences in depicting a contrast bolus. It is hypothesized that the view order of the acquisition and the selection of views in the reconstruction can affect the positional accuracy and sharpness of the leading edge of the bolus and artifactual signal preceding the edge. Phantom studies were performed using dilute gadolinium-filled vials that were moved along tabletop tracks by a computer-controlled motor. Several view orders were tested using view-sharing and Cartesian sampling. Compactness of measuring the k-space center, consistency of view ordering within each reconstruction frame, and sampling the k-space center near the end of the temporal footprint were shown to be important in accurate portrayal of the leading edge of the bolus. A number of findings were confirmed in an in vivo CE-MRA study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.