Abstract

We report on the controlled excitation of line and point defect modes in a two-dimensional hexagonal electromagnetic band-gap structure made of rods of dielectric material (aluminium oxide). We compared simulation performed with a numerical field simulation software and experimental measurements at microwave frequencies with regard to coupling from external waveguides to line defects and subsequent coupling to resonant modes. We observed that for a line defect in the photonic crystal the impedance matching to a waveguide is strongly dependent on the defect width. We furthermore demonstrated that the coupling to a localized defect resonance can be strongly influenced by the variation of certain single lattice elements, affecting transmission behavior and quality factor of the resonant modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call