Abstract

We have demonstrated a novel strategy for the synthesis of mesoporous silica nanoparticles (MSNPs) using a surfactant-free method under ambient conditions. By the simple addition of an amine-based polymer (polyethylenimine; PEI) with a high molecular weight to a silica nanoparticle (SNP) solution, two types of MSNPs, including rambutan-like MSNPs (R-MSNPs) and hollow MSNPs (H-MSNPs), were produced. The structural changes of the MSNPs were systematically studied using various reaction conditions (reaction time, molar ratio and molecular weight of PEI, etc.) and were observed using electron microscopic techniques. The formation mechanisms of both MSNPs were carefully investigated using XPS, Raman, and IR spectroscopies. Because the synthesized MSNPs are highly porous materials that contain internal organic/inorganic networks, we investigated the removal/adsorption properties of these MSNPs with respect to pollutants toward possible future use in environmental remediation applications. The H-MSNPs exhibited better environmental remediation capabilities relative to the R-MSNPs because PEI is present between the cobweb-like internal structures of the H-MSNPs, thereby providing a significant number of reaction sites for the adsorption of pollutants. The approach presented here can also be used as a direct method for the preparation of intraconnected networks within the substructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call