Abstract

One of the challenges in treating central nervous system (CNS) disorders with biomolecules is achieving local delivery while minimizing invasiveness. For the treatment of stroke, stimulation of endogenous neural stem/progenitor cells (NSPCs) by growth factors is a promising strategy for tissue regeneration. Epidermal growth factor (EGF) enhances proliferation of endogenous NSPCs in the subventricular zone (SVZ) when delivered directly to the ventricles of the brain; however, this strategy is highly invasive. We designed a biomaterials-based strategy to deliver molecules directly to the brain without tissue damage. EGF or poly(ethylene glycol)-modified EGF (PEG-EGF) was dispersed in a hyaluronan and methylcellulose (HAMC) hydrogel and placed epi-cortically on both uninjured and stroke-injured mouse brains. PEG-modification decreased the rate of EGF degradation by proteases, leading to a significant increase in protein accumulation at greater tissue depths than previously shown. Consequently, EGF and PEG-EGF increased NSPC proliferation in uninjured and stroke-injured brains; and in stroke-injured brains, PEG-EGF significantly increased NSPC stimulation. Our epi-cortical delivery system is a minimally-invasive method for local delivery to the brain, providing a new paradigm for local delivery to the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.