Abstract

The in vitro release behavior of a novel liposome-based drug delivery device has been characterized. The system consists of a molded agarose matrix in which the model drug (progesterone) was dispersed either free or associated with one of four lipid formulations: egg-phosphatidylcholine (EPC) liposomes, EPC/cholesterol (2:1) liposomes, Intralipid® emulsion, and dipalmitoylphosphatidylcholine (DPPC) liposomes. Drug release rates from the devices into aqueous buffer were measured at 37° C. The free progesterone release rate decreased rapidly over 24 h with over 90% delivered. The liposomal patches, on the other hand, imposed apparent zero-order kinetics: for example, both the EPC and DPPC systems delivered their progesterone payloads at about 1%/h over 24 h. Further, the EPC and DPPC patches significantly slowed transdermal drug delivery across excised hairless mouse skin. The EPC device retarded throughput to one-half the control value, the DPPC system reduced the transport kinetics by an order of magnitude. The results support two hypotheses: (a) the liposomal-based reservoir system can modulate drug input via the skin, (b) the zero-order release of progesterone from liposomes is determined by slow interfacial transport out of the bilayer into the surrounding aqueous medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call