Abstract

The authors present an improved geometry for a micron-scale pad for the injection of vortex domain walls (VDWs) into ferromagnetic nanowires. The pad supports a single vortex magnetization state, the chirality of which can be controlled simply by field saturation along a specific direction. We show, using Lorentz transmission electron microscopy, that utilization of such pads allows the chirality of VDWs injected into the attached wire to be predetermined. Furthermore, the pad vortex state is highly stable and survives repeated injection and depinning of VDWs from an asymmetric notch located some distance along the wire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.