Abstract

Lanthanide-doped upconversion nanoparticles (UCNPs) have unique photoluminescent properties that are useful in many biomedical applications. Modification of UCNPs with a polymer layer can confer additional functionality such as biocompatibility, stability in vivo, or drug delivery capability. It is also important that the modification process can be controlled precisely and without having adverse effects on the UCNPs luminescence properties. Herein, a polymer shell was grafted directly from the surface of UCNPs (grafting from) via visible light (λmax = 635 nm, 0.7 mW/cm2) regulated photoenergy/electron transfer–reversible addition fragmentation chain transfer polymerization (PET-RAFT). The polymerization kinetics, grafting density, and thickness of the surface-tethered polymer chains can be tuned precisely by adjusting the monomer and RAFT agent ratio or the light exposure time. This approach also permits temporal control of the polymerization process. That is, the polymerization process can be initiated,...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call