Abstract

The solidification path of a controlled diffusion solidification (CDS) mixture based on the determination of a common cooling curve cannot be easily studied. This is due to the interference caused by convectional flows through temperature distribution and loss of the liquidus temperature. In this work, the lost stage of the CDS pathway for an AA 7xxx series aluminum alloy has been defined both experimentally and by the use of a Scheil solidification curve for high thermal-mass alloy. The solidification path (T–fs curve) of the alloy shifts to higher temperatures as a result of CDS processing which indicates an alternative form of higher-kinetics nucleation and growth. As a result of the increase in the nucleation temperature, the solidification interval can be larger than that of the conventional alloy. In comparison with the conventional solidification, CDS promotes the coherency fraction solid, while it has no effect on the coherency temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call