Abstract

Aqueous zinc-ion batteries are regarded as ideal candidates for stationary energy-storage systems due to their low cost and high safety. However, zinc can readily grow into dendrites, leading to limited cycling performance and quick failure of the batteries. Herein, a novel strategy is proposed to mitigate this dendrite problem, in which a selectively polarized ferroelectric polymer material (poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))) is employed as a surface protective layer on zinc anodes. Such a polarized ferroelectric polymer layer can enable a locally concentrated zinc-ion distribution along the coated surface and thus enable the horizontal growth of zinc plates. As a result, symmetrical zinc batteries using such anodes exhibit long cycling lifespan at 0.2mA cm-2 , 0.2 mAh cm-2 for 2000 h, and a high rate performance up to 15mA cm-2 . Also, the full cell (including a Zn-MnO2 battery and a zinc-ion capacitor) based on this anode is demonstrated. This work provides a novel strategy to protect the zinc anode and even other metal anodes exploiting polymer ferroelectricity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.