Abstract

An interpenetrating network (IPN) hydrogel was developed by the miscibility between nanocellulose and sodium alginate through an acetic acid coagulation bath and Ca2+ chelation. Double crosslinking played a key role during the construction of the IPN hydrogel network. The nanofibers significantly prolonged the aspirin release time to ∼ 60 h, which benefits from the rich and regular network structure of the hydrogel. Carboxyl groups contribute to the variation in release capacity in different pH environments. The strategy proposed in this study would guide the preparation of purely physically crosslinked IPN hydrogels with good mechanical properties and cytocompatibility and their application in the drug delivery field. This study aimed to explore the double crosslinking process for prolonged aspirin release capacity between nanocellulose and sodium alginate. The obtained results suggested that a pH-sensitive nanocellulose-sodium alginate IPN hydrogel would be an ideal aspirin carrier for long-term release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.