Abstract

We report a robust one-dimensional (1D) nanoparticle-assembly strategy that uses the self-assembly of nanoparticles with ligand and thermal controls, polyethylene glycol (PEG) with thiol and carboxyl groups, and nanoparticle oligomer and polymer codewetting process to form ultralong and continuous 1D nanochains. The 1D nanochains were assembled with closely packed 1D nanoparticle oligomer building blocks, elongated and buttressed by dynamic 1D PEG templates formed on a hydrophobic surface via anisotropic spinodal dewetting. Using this strategy, nanoparticle-packed 1D nanochains (∼1 nm interparticle spacing) were fabricated with ∼60 nm-width and a few to >10 μm-length (nearly 20 μm in some cases) from 20 nm gold nanoparticles. Our findings offer insights and open revenues for particle assembly processes and, as given by 'universality in colloid aggregation', should be readily applicable to various nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.