Abstract

The adsorption mechanism of titanium-binding peptide (TBP) on metal oxide substrates was investigated by evaluating the adsorption behavior of ferritins with various alanine-substituted TBPs. Results revealed that (a) a positively charged amino acid, lysine (K) or arginine (R), in TBP can anchor ferritin to negative zeta-potential substrates, (b) the adsorption force of K is stronger than R, and (c) local electrostatic interactions and flexibility of TBP directly affect adsorption. Based on these findings, selective ferritin adsorption on SiO2 with TiOX patterned surfaces in a surfactant-free condition was demonstrated. Alanine-substituted TBP with one positively charged amino acid (K) and one negatively charged amino acid (D), achieved ferritin-selective adsorption without a surfactant. The importance of controlled electrostatic forces between TBP and a substrate for selective adsorption without a surfactant was clearly demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.