Abstract

Stretchable electronics have spurred rapid developments from curvilinear devices to bio-integrated diagnostic and therapeutic devices. The wavy configuration in the device components on a stretchable elastomeric substrate surface plays a prominent role in simultaneously achieving high areal coverage and stretchability without compromising the electric performance, resulting in unique applications in stretchable and flexible light-emitting diodes (LEDs), batteries, supercapacitors, and photovoltaics. In this study, we investigate the buckling behaviors of stiff thin films on the top surface of a biaxially pre-strained elastomeric substrate with square prism micro-patterned structures. Based on energy minimization, a theoretical model is established to study the buckling profiles and the maximum strain for different pre-strain levels along two directions, which agrees reasonably well with those obtained by the finite element analysis (FEA). After revealing the effect of the center-to-center distance in micro-patterned structures and the interfacial contact width between the film and substrate on the buckling behavior, the elastic stretchability of the system is studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call