Abstract
We present a new approach for adaptive approximation of the value function in stochastic dynamic programming. Under convexity assumptions, our method is based on a simplicial partition of the state space. Bounds on the value function provide guidance as to where refinement should be done, if at all. Thus, the method allows for a trade-off between solution time and accuracy. The proposed scheme is experimented in the particular context of hydroelectric production across multiple reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.