Abstract
The results of a comprehensive in vivo study of a novel tumor-targeting modality are reported. The technique utilized in this study is based on the encapsulation of the chemotherapeutic agent within polymeric micelles in combination with a local ultrasonic irradiation of the tumor. A doxorubicin (DOX) biodistribution, a yield of the internal tumors and a growth rate of the subcutaneous (s.c.) tumors was compared for molecularly dissolved and micellar-encapsulated DOX. This was done with and without tumor sonication, using an ovarian carcinoma tumor model in nu/nu mice. Pure and mixed Pluronic P-105, PEG2000-diacylphospholipid, and poly(ethylene glycol)-co-poly(β-benzyl- l-aspartate) micelles were used as drug carriers. DOX intracellular uptake was characterized by flow cytometry. A local ultrasonic irradiation of the tumor resulted in a substantially increased drug accumulation in the tumor cells. The effect of the ultrasound was dependent on the time between ultrasound application and drug injection. Ultrasound did not enhance micelle extravasation; the ultrasonic enhancement of drug internalization by the tumor cells required a preliminary passive drug accumulation in the tumor interstitium. Due to the ultrasound-enhanced drug intracellular uptake and cell killing, the yield of intraperitoneal (i.p.) ovarian carcinoma tumors decreased from 70% for DOX dissolved in PBS (positive control) to 36% for the same concentration of DOX encapsulated in Pluronic micelles combined with a 30-s sonication of the abdominal region of a mouse (3 mg/kg DOX, i.p. injection 1 day after inoculation, n≥10). For s.c. tumors, micellar delivery combined with localized ultrasonic tumor irradiation resulted in a substantial decrease of the tumor growth rates compared to a positive control (3 mg/kg DOX, i.v. injections, n=7, p<0.05). Possible mechanisms of the ultrasound bioeffects on in vivo drug targeting are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.