Abstract

Silicon (Si) is an important material in photoelectrochemical (PEC) water splitting because of its good light-harvesting capability as well as excellent charge-transport properties. However, the shallow valence band edge of Si hinders its PEC performance for water oxidation. Generally, thanks to their deep valence band edge, metal oxides are incorporated with Si to improve the performance, but they also decrease the transportation of carriers in the electrode. Here, we integrated a ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] layer with Si to increase the photovoltage as well as the saturated current density. Because of the prominent ferroelectric property from P(VDF-TrFE), the Schottky barrier between Si and the electrolyte can be facially tuned by manipulating the poling direction of the ferroelectric domains. The photovoltage is improved from 460 to 540 mV with a forward-poled P(VDF-TrFE) layer, while the current density increased from 5.8 to 12.4 mA/cm(2) at 1.23 V bias versus reversible hydrogen electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.