Abstract

Functional strain sensing is essential to develop health monitoring and Internet of Things. The performance of either narrow sensing range or low sensitivity restricts strain sensors in a wider range of future applications. Attaining both high sensitivity and wide sensing range of a strain sensor remains challenging. Herein, a cluster-type microstructures strategy is proposed for engineering high stretchability of highly sensitive strain sensor. The resistance change of the strain sensor is determined by the deformation of the cluster-type microstructures from close arrangement to orderly interval state during being stretched. Because of the unique geometric structure and conductive connection type of the sensing material, the strain sensor achieves a considerable performance that features both high sensitivity (gauge factor up to 2700) and high stretchability (sensing range of 160% strain). Fast response time and long-term stability are other characteristics of the strain sensor. Monitoring of multiple limb joints and controlling of audible and visual devices are demonstrated as the proof-of-concept abilities of the strain sensor. This study not only puts forward a novel design thought of strain sensor but also offers considerable insights into its potential value toward burgeoning fields including but not limited to real-time health monitoring and intelligent controls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call