Abstract

The dynamics of water molecules in a single-walled carbon nanotube (SWNT) under continuous deformations was studied with molecular dynamics simulations. The flux and occupancy remain almost fixed within a deformation of 2.0 A but decrease sharply for a further deformation of 0.6 A. The nanopore is an excellent on-off gate that is both effectively resistant to deformation noises and sensitive to available signals. Biological water channels are expected to share this advantage due to similar wavelike water distributions. The minimal external force required for triggering an open-close transition falls within the working range of many available experimental facilities, which provides the possibility of developing SWNT-based nanoscale devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.