Abstract

We theoretically demonstrate the influence of dark and bright states on vacuum Rabi splitting (VRS) and optical bistability (OB) of the multi-wave-mixing (MWM) process in a collective four-level atomic-cavity coupling system. We numerically investigate the multidressed VRS and OB behavior of the zero- and high-order transmitted cavity modes of MWM signals. A further study demonstrates that VRS and self-Kerr nonlinearity OB can coexist and compete with each other in a cascade relationship, based on which we achieve the goal to control VRS and OB simultaneously through the dark state in the atomic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.