Abstract

Graphene is often regarded as one of the most promising candidates for future nanoelectronics. As an indispensable component in graphene-based electronics, the formation of junctions with other materials not only provides utility functions and reliable connexions, but can also improve or alter the properties of pristine graphene, opening up possibilities for new applications. Here we demonstrate an intramolecular junction produced by the controllable unzipping of single-walled carbon nanotubes, which combines a graphene nanoribbon and single-walled carbon nanotube in a one-dimensional nanostructure. This junction shows a strong gate-dependent rectifying behaviour. As applications, we demonstrate the use of the junction in prototype directionally dependent field-effect transistors, logic gates and high-performance photodetectors, indicating its potential in future graphene-based electronics and optoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call