Abstract

By exploiting coordination-driven self-assembly, high yields of two 818 molecular metalla-knots could be obtained using a thiazole-moiety-containing asymmetric dipyridyl ligand 2-(pyridin-4-yl)-5-(pyridin-4-ylethynyl)benzo[d]thiazole (L1 ), as confirmed using X-ray crystallographic analysis, electrospray ionization-time-of-flight/mass spectrometry (ESI-TOF/MS), and detailed liquid-state nuclear magnetic resonance (NMR) spectroscopy. To modulate the self-assembled structures, m-chloroperbenzoic acid (m-CPBA) was utilized to oxidize thiazole-based ligand L1 to N-thiazole-oxide-based ligand 2-(pyridin-4-yl)-5-(pyridin-4-ylethynyl)benzo[d]thiazole 3-oxide (L2 ), which enabled the selective construction of the corresponding tetranuclear macrocycles. Notably, two molecular metalla-knots could be topologically transformed from 818 knots to simple monocycles because the L1 alkyne bond was inert toward m-CPBA, as confirmed by liquid-state NMR spectroscopy, ESI-TOF/MS, and elemental analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.