Abstract

Fabrication of multifunctional nanocatalysts with surface-enhanced Raman scattering (SERS) activity is of vital importance for monitoring catalytic courses in situ and studying the reaction mechanisms. Herein, SERS-active magnetic metal-organic framework (MOF)-based nanocatalysts were successfully prepared via a three-step method, including a solvothermal reaction, an Au seed-induced growth process, and a low-temperature cycling self-assembly technique. The as-synthesized magnetic MOF-based nanocatalysts not only exhibit outstanding peroxidase-like activity, but can also be applied as a SERS substrate. Owing to these features, they can be used for monitoring in situ catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 via a SERS technique, and the concentration of H2O2 was determined. Owing to the intrinsic character of the Fe-based MOF material (MIL-100(Fe)), a novel photoinduced enhanced catalytic oxidation effect was demonstrated, in which the catalytic oxidation of TMB and o-phenylenediamine was accelerated. This study provides a versatile approach for the fabrication of functional MOF-based nanocomposites as a promising SERS substrate with a unique photoinduced enhanced peroxidase-like activity for potential applications in ultrasensitive monitoring, biomedical treatment, and environmental evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.