Abstract

The efficient and safe capture of radioactive iodine (129I or 131I) is of great significance in nuclear waste disposal. Here, we report millimeter-scale poly(ether sulfone) composite beads loaded with porous Cu-BTC [Cu3(BTC)2, BTC = 1,3,5-benzenetricarboxylate] (Cu-BTC@PES), prepared by a phase inversion method for the removal of volatile iodine. Three kinds of Cu-BTC@PES composite beads were obtained with different Cu-BTC contents of 48.6, 60.2, and 71.9%, respectively. While maintaining crystallinity, the composite beads exhibited higher I2 vapor adsorption capacity (639 mg/g) in the form of iodine molecules. The iodine absorption up to 260 mg/g and the adsorption was followed Langmuir isotherm and pseudo-second-order kinetic model. Furthermore, the composite beads can still absorb more than 85% of iodine after 3 cycles of regeneration with excellent recyclability. The resulting Cu-BTC@PES composite beads show great potential for the sustainable removal of radioactive iodine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.