Abstract

A microfluidic assembly method based on a microfluidic chip and capillary device was developed to create multicompartmental particles. The microfluidic chip design endows the particles with regulable internal structure. By adjusting the microstructure of the chip, the diameter of the capillary, the gap length between the two microfluidic components, and the flow rates, the size of the particles and the number or the ratio of different regions within the particle could be widely varied. As a proof of concept, we have produced some complicated particles that even contain 20 compartments. Furthermore, the potential applications of the anisotropic particles are explored by encapsulating magnetic beads, fluorescent nanoparticles, and the cells into different compartments of the microparticles. We believe that this method will open new avenues for the design and application of multicompartmental particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.