Abstract

Due to the escalating demand for electronic dependability and defense security, there has been a surge in research into broadband and lightweight microwave absorbers. Porous composites that are lightweight and plentiful in interfaces have the potential to be high-performance absorbers due to their ability to attenuate waves in a balanced manner and match impedance. “Using a solvothermal technique we generated FeSe2/rGO composites with a porous topology. By varying the weight of rGO, the electromagnetic properties of FeSe2/rGO composites may be finely tuned. Impedance matching and attenuation capability are both improved as a direct result of the porous structure and the appropriate electromagnetic parameters. FeSe2/rGO composites benefit from the tunable composition, porous structure, and strong synergistic effect between FeSe2 and rGO sheets and display outstanding microwave absorption performance with an ultrabroad bandwidth approaching 5.2 GHz with a thin thickness of 1.6 mm which covers 75% of the studied frequency range. At the same thickness, a significant reflection loss of −43.7 dB is attained. This work not only enables the tuning of electromagnetic parameters but also expands the use of high-performance microwave absorption devices. Remarkable microwave absorption ability, of the porous composites FeSe2/rGO can be utilized as a high-performance microwave absorber.”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call