Abstract

A direct current (DC) has been applied to prepare many carbon nanomaterials, including fullerene, graphene, and carbon nanohorns (CNHs) from inner wall of chamber. However, the growth mechanism of these carbon nanomaterials is not clear. Amorphous spherical carbon nanoparticles (SCNs), the typical ‘dahlia-like’ CNHs, and graphene with the layer numbers of 2–5 were synthesized controllably from the inner wall of the chamber by DC arc discharge method using argon, nitrogen, and hydrogen as buffer gas. Simultaneously, the effect of buffer gas pressure on the morphology of carbon nanomaterials was investigated systematically. Furthermore, the formation mechanism of these carbon nanomaterials by DC arc discharge was also investigated. Given that argon atom was difficult to bond with the carbon cluster, the random bond between carbon clusters contributed to combine into amorphous SCNs; the CN bond was the key factor in the formation of CNHs, and hydrogen contributes to form graphene sheets by terminating carbon dangling bonds. With increasing the pressure of buffer gas, intense quenching resulted in formation of carbon nanomaterials with high purity. The study on the growth mechanism of carbon nanomaterials in the inner wall of chamber promotes the preparation of carbon nanomaterials controllable by arc discharge method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.