Abstract

Different types of carbon coated iron (Fe) based nanoparticles were controllably synthesized by detonation decomposition of urea nitrate metal complex explosive precursors. In order to control the detonation synthesis of the Fe-based composite nanoparticles, the main components of the urea nitrate metal complex explosive precursors were optimally designed. The components, morphologies, structures and various Fe-based phase composition of the as-obtained composite nanoparticles were further investigated by x-ray diffraction, transmission electron microscopy, electron diffraction spectroscopy and energy dispersive x-ray spectroscopy. The results show that discrete, spherical, uniformly sized (∼55 nm) iron oxide nanocrystals and core–shell structural composite nanoparticles (graphite coated Fe) were effectively synthesized by adjusting the densities, oxygen balances and mole ratios of C:Fe of these compound explosive precursors. The formation mechanism of these carbon coated Fe-based composites during the instantaneous detonation reaction process is further discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.