Abstract

ZnO quantum dots (QDs) have been successfully encapsulated in the amorphous SiO2 matrix by a modified Stober method. The effects of the sequence of adding the ZnO QDs and tetraethyl orthosilicate (TEOS) and the hydrolysis time of TEOS on the structure, ordered and optical properties of ZnO–SiO2 nanocomposites were investigated in detail. When the TEOS was added to the solution of ZnO QDs, the QDs were disorderly dispersed within the amorphous SiO2 matrix. On the other hand, as adding the ZnO QDs to the already hydrolyzed TEOS solution, the self-assembly of ZnO–SiO2 nanocomposites was observed through a general route of zero-dimensional (0D) → 1D → 3D with the hydrolysis time of TEOS increased. The possible formation mechanisms were schematically illustrated. PL results showed that the PL peak intensity and the position of UV emission were sensitive to the hydrolysis time of TEOS, the luminescence intensity of the UV emission for the ZnO–SiO2 nanocomposites reached the highest value when t = 6 h. These ZnO–SiO2 nanocomposites would show a wider application for its particular structure, stability and enhanced emission, such as the conjugation of the nanocrystals to biological entities after functionalization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call