Abstract

Well-defined three-dimensional (3D) hierarchical flowerlike calcium molybdate (CaMoO4) microspheres were successfully synthesized via a facile ultrasound-assisted ethylenediaminetetraacetic acid (EDTA) chelation process. The structure and morphology were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). Time-dependent experiments with appropriate intervals have clearly disclosed that the self-assembly process of 3D flowerlike CaMoO4 microspheres is governed by a nucleation–dissolution–recrystallization growth mechanism. Moreover, the nitrogen adsorption–desorption isotherm indicated the presence of mesoporosity in the product. The room temperature photoluminescence (PL) properties of the products were then studied using a spectrophotometer and the samples exhibited green emission peaks centered around 470 nm, 485 nm and 493 nm with 280 nm excitation wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.